Section	Area A	Wetted perimeter P	Hydraulic radlus R	Top width	Hydraulic dep th D	Section factor Z
	Ŵ	v z + 4	$\frac{by}{b+2y}$	q	ų	by ¹²
	f(h + x)	$b + 2y \sqrt{1 + x^2}$	$\frac{(b+xy)y}{b+2y\sqrt{1+x^2}}$	ð + 2.gv	$\frac{(b+xy)y}{b+2xy}$	$\frac{\left[(b+z_{y})y\right]^{1,5}}{(b+2z)}$
	्रथीय	$2y \sqrt{1+x^2}$	$\frac{z_V}{2\sqrt{1+z^2}}$	2zy	1/2/	$\frac{\sqrt{2}}{2}x^{\mu_2}$
	$1_{4}(\theta \oplus \operatorname{sin} \theta)_{1}^{2}$	¹ /20طي	$1_{f_{\delta}}(1D^{\frac{2}{2}}, \int_{0}^{T}$	$\left(\sinh^{(1)}_{j} \theta \right) d_{dj}$ or 2 $\langle y \left(d_{dj}^{T} y \right)$	${}^{1}\!\!\!/_{4}\!\!\left(\frac{\partial \mathrm{B}\mathrm{sth}\!$	$rac{\sqrt{2}}{32} rac{\left(\partial \operatorname{D} \operatorname{sim} \partial ight)^{13}}{\left(\sin^1_{f, H} ight)^{0.5}} rac{d^{1.5}}{2}$
	Q. 9.	$T + \frac{6y^3}{3T}$	$\frac{2T^3y}{3T^3+8y^3}$	<u>78</u>	² /s/	$z_{j_5} \sqrt{6T_y}^{1.5}$
	(² /2 D 2)1 ² + (b + 2r)p	(#B2)r+6+2/	$\frac{\left(\frac{\pi}{2} \oplus 2\right) e^2 + \left(b + 2r\right) y}{\left(a \oplus 2\right) r + b + 2y}$	\$+ 2 r	$\frac{\left(\frac{5}{2} \oplus 2\right)t^2}{\left(b + 2r\right)} + y$	$\left[\left(\frac{\pi}{2} \operatorname{D} 2\right) v^2 + \left(b + 2x\right) v^3\right]^5$ $\sqrt{b + 2y}$
	$\frac{T^2}{4z} - \frac{\rho^2}{z} \left(1 \text{ B ztol}^1 z \right)$	$\frac{T}{x} \left< \frac{1}{x} - \frac{2x}{x} \left< 1 \neq x = 0 \right> $	₩ A	$2\left[x(y \oplus x) + \pi^{\prime} 1 + x^{2}\right]$	¥	¥ ¥
atisfact	*Satisfactory approximation for the	the interval 0 <x*1, when="" where="" x="">1, use the exact expression</x*1,>	lyT. When x>1, use th	1	$= (t_3) \left[\sqrt{1 + x^2} + \right]$	$P = (f_2) \left[\sqrt{1 + x^2} + \frac{1}{2} \ln \left(x + \sqrt{1 + x^2} \right) \right]$

Figure II-4.13. Geometric Elements of Common Sections

July 2021